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Abstract

We present a framework for the construction of a globally C1-smooth isogeometric spline
space over a particular class of G1-smooth multi-patch surfaces called analysis-suitable G1

(in short AS-G1) multi-patch surfaces. The class of AS-G1 multi-patch surfaces consists
of those G1-smooth multi-patch surfaces which allow the construction of C1-smooth iso-
geometric spline spaces with optimal polynomial reproduction properties [6]. Our method
extends the work [20, 21], which is limited to the case of planar AS-G1 multi-patch param-
eterizations, to the case of AS-G1 multi-patch surfaces. The C1-smooth isogeometric spline
space is generated as the span of locally supported and explicitly given basis functions of
three different types that correspond to the patches, interfaces and vertices of the con-
sidered AS-G1 multi-patch surface. We further present simple and practical methods for
the design of AS-G1 multi-patch surfaces and demonstrate the potential of the C1-smooth
spline space for solving fourth order partial differential equations over AS-G1 multi-patch
surfaces on the basis of the biharmonic equation. The obtained numerical results indicate
convergence rates of optimal order in the L2-norm and in the H1- and H2-seminorms.

Keywords: Isogeometric analysis, C1-smooth isogeometric spline space, analysis-suitable
G1 parameterization, multi-patch surface
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1. Introduction

Multi-patch spline surfaces [36] are a powerful tool in computer-aided geometric de-
sign [9, 15] to construct complex geometries and can be used in the framework of isogeo-
metric analysis [3, 7, 16] to represent the computational domain of the considered partial
differential equation. For solving a fourth order partial differential equation, such as the
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biharmonic equation, e.g. [2, 6, 18, 22, 33], the Kirchhoff-Love shell problem, e.g. [1, 4, 26–
28], the Cahn-Hilliard equation, e.g. [12, 13, 29], or problems of strain gradient elasticity,
e.g. [11, 31, 35], over a multi-patch surface directly via its weak form and a standard
Galerkin discretization, the multi-patch spline surface has to be G1-smooth (i.e. geometri-
cally C1-smooth) and the isogeometric discretization space of the considered problem has
to be globally C1-smooth.

An isogeometric spline function is C1-smooth over a G1-smooth multi-patch surface
if and only if the associated graph surface is also G1-smooth [14]. Recall that the graph
surface is a two-parametric surface in R4, whose first three coordinates are the G1-smooth
multi-patch surface and the fourth coordinate is the isogeometric spline function. The
equivalence of the C1-smoothness of the isogeometric function and the G1-smoothness of
the graph of the isogeometric function provides the possibility to construct globally C1-
smooth isogeometric spline spaces over multi-patch surfaces.

The construction of C1-smooth isogeometric spline spaces for planar multi-patch ge-
ometries has been intensively studied in the last years, see e.g., the two recent survey
articles [17, 20] for details. For the case of multi-patch surfaces, the existing methods can
be roughly classified, similar to the planar case, into three approaches depending on the
employed parameterization of the multi-patch surface. The first approach uses a multi-
patch parameterization which is C1-smooth everywhere and which possesses therefore a
singularity at extraordinary vertices, see e.g. [34]. In the second technique, the multi-
patch parameterization is C1-smooth everywhere except in the vicinity of an extraordinary
vertex where a particular G1-smooth cap is needed, see e.g. [23–25, 33]. The third approach
is based on a multi-patch parameterization which is in general just G1-smooth across all
interfaces, see e.g. [5].

In this work, we follow the third approach to develop a method for the construction
of a C1-smooth isogeometric spline space over a particular class of G1-smooth multi-patch
surfaces, which are called analysis-suitable G1 (in short, AS-G1) multi-patch surfaces [6].
The AS-G1 assumption for a multi-patch surface is required to obtain spaces possessing
optimal approximation properties [6, 19]. The constructed C1-smooth spline space, which
is a specific subspace of the full C1-smooth isogeometric spline space, is easy to generate
and possesses the same numerical approximation properties as the full space. We present
for the specific C1-smooth subspace a simple, explicitly given and locally supported basis,
which is well suited for numerical simulation. The C1-smooth subspace is constructed in
such a way that its dimension is independent of the underlying AS-G1 parameterization
of the multi-patch surface. Thereby, the proposed approach extends and generalizes the
method [20, 21], which is limited to the case of planar AS-G1 multi-patch parameteriza-
tions, in two directions. First, our construction works not only for planar domains but
also for AS-G1 multi-patch surfaces. This requires the adaptation as well as the investiga-
tion of different tools used in the construction of the C1-smooth multi-patch spline space.
Second, we introduce the novel concept of an AS-G1 skeleton, which is the object formed
by the topological structure, the connectivity information across the patch interfaces and
the neighborhood information of the vertices of an AS-G1 multi-patch surface. The AS-
G1 skeleton can also be defined and generated without an underlying AS-G1 multi-patch
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surface and is sufficient for the construction of the C1-smooth multi-patch spline space.
Besides, we also present a novel general framework for the construction of AS-G1 multi-

patch surfaces. The proposed framework is based on the use of a C1-smooth spline space
defined for an appropriately selected AS-G1 skeleton, and is employed to develop two
specific simple and practical design methods. These two techniques are then used to
generate some examples of AS-G1 multi-patch surfaces. The design of AS-G1 multi-patch
surfaces is a challenging task since the desired surfaces have to be not only G1-smooth,
they also have to satisfy the more restrictive AS-G1 continuity condition. If the AS-G1

condition is not satisfied, the approximation properties of the isogeometric discretization
over the multi-patch surface are, in general, reduced [19].

We further numerically study the approximation properties of the introduced C1-
smooth isogeometric spline space by solving the biharmonic equation over the constructed
AS-G1 multi-patch surfaces. For this purpose, we describe an isogeometric discretization of
two different model problems of the biharmonic equation based on the one in [2] for single
patch surfaces and homogeneous boundary conditions, and extend it to case of multi-patch
surfaces as well as to the case of non-homogeneous boundary conditions. The numerical
results indicate optimal approximation properties of the constructed C1-smooth isogeomet-
ric spline space, and show therefore also the great potential of these C1-smooth functions
to solve fourth order partial differential equations over multi-patch surfaces.

The remainder of the paper is organized as follows. In Section 2, we recall some pre-
liminaries, which include the introduction of the used class of multi-patch surfaces, called
AS-G1 multi-patch surfaces (cf. [6]), as well as of the concept of C1-smooth isogeometric
spline spaces over AS-G1 multi-patch surfaces. In addition, we introduce the concept of
the AS-G1 skeleton of an AS-G1 multi-patch surface, which is used to generate the specific
C1-smooth isogeometric spline space. Section 3 presents then the construction of this C1-
smooth isogeometric spline space including the construction of a simple, explicitly given
and locally supported basis as well as the investigation of the dimension of the C1-smooth
spline space. In Section 4, we describe a novel methodology for the design of AS-G1 multi-
patch surfaces and use it to generate instances of AS-G1 multi-patch surfaces. Section 5
numerically explores the approximation properties of the introduced C1-smooth isogeomet-
ric spline space by solving the biharmonic equation over the constructed surfaces. For this,
we study two different model problems of the biharmonic equation, and establish for both
cases an isogeometric Galerkin discretization based on the specific C1-smooth isogeometric
spline space. Finally, we conclude the paper in Section 6.

2. Preliminaries

We first introduce the multi-patch setting which will be used throughout the paper. For
this purpose, we consider a particular class of G1-smooth multi-patch surfaces, called AS-
G1 multi-patch surfaces, which allows the construction of C1-smooth isogeometric spline
spaces with optimal polynomial reproduction properties [6]. In doing so, we follow a similar
notation as in [20, 21] for the case of planar multi-patch domains. We also recall the concept
of C1-smooth isogeometric spline spaces over AS-G1 multi-patch surfaces. Besides this, we
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describe further tools, such as the AS-G1 skeleton, which will be needed among others to
construct the C1-smooth multi-patch spline space in Section 3.

2.1. The multi-patch setting

Let p ≥ 3, 1 ≤ r ≤ p − 2 and k ≥ 1. We denote by Sp,rh the univariate spline space
of degree p, continuity Cr and mesh size h = 1

k
defined on the parameter domain [0, 1],

and denote by Sp,r
h , with p = (p, p) and r = (r, r), the corresponding bivariate tensor-

product spline space Sp,rh ⊗ S
p,r
h defined on the parameter domain [0, 1]2. In addition, let

Np,r
j , j = 0, . . . , n − 1 with n = p + (k − 1)(p − r) + 1 the B-splines of the spline space
Sp,rh , and let Np,r

j = Np,r
j1
Np,r
j2

, j = (j1, j2) ∈ {0, . . . , n − 1}2, the tensor-product B-splines

of the tensor-product spline space Sp,r
h . We also need the univariate spline spaces Sp,r+1

h

and Sp−1,r
h , where we denote the corresponding B-splines by Np,r+1

j , j = 0, . . . n0 with

n0 = p+ (k−1)(p− r−1) + 1, and by Np−1,r
j , j = 0, . . . n1 with n1 = p+ (k−1)(p− r−1),

respectively. We further introduce basis transformations from {Np,r
0 , Np,r

1 } to {Mp,r
0 ,Mp,r

1 },
from {Np,r+1

0 , Np,r+1
1 , Np,r+1

2 } to {Mp,r+1
0 ,Mp,r+1

1 ,Mp,r+1
2 } and from {Np−1,r

0 , Np−1,r
1 } to

{Mp−1,r
0 ,Mp−1,r

1 }, where Mp,r
i , i = 0, 1, Mp,r+1

i , i = 0, 1, 2, and Mp−1,r
i , i = 0, 1, are

functions with the property that

∂jξM
p,r
i (0) = δji j = 0, 1, ∂jξM

p,r+1
i (0) = δji j = 0, . . . , 2, and ∂jξM

p−1,r
i (0) = δji j = 0, 1,

respectively, and where δji is the Kronecker delta. The explicit representations of the
functions Mp,r

i , Mp,r+1
i and Mp−1,r

i are given by

Mp,r
0 (ξ) =

1∑

j=0

Np,r
j (ξ), Mp,r

1 (ξ) =
h

p
Np,r

1 (ξ),

Mp,r+1
0 (ξ) =

2∑

j=0

Np,r+1
j (ξ), Mp,r+1

1 (ξ) =
h

p

2∑

j=1

ϑ(j)Np,r+1
j (ξ), Mp,r+1

2 (ξ) =
h2µ

p(p− 1)
Np,r+1

2 (ξ)

with ϑ(j) = j and µ = 1 for r < p− 2, and ϑ(j) = 2j − 1 and µ = 2 for r = p− 2, and

Mp−1,r
0 (ξ) =

1∑

j=0

Np−1,r
j (ξ), Mp−1,r

1 (ξ) =
h

p
Np−1,r

1 (ξ),

respectively. Moreover, let q ≥ 1, then we denote by Pq1 the univariate space of polynomials
of degree q on the parameter domain [0, 1], and by Pq

2 with q = (q, q), the corresponding
bivariate tensor-product polynomial space Pq1⊗P

q
1 defined on the parameter domain [0, 1]2.

We consider a G1-smooth1 conforming2 multi-patch surface F consisting of regular
quadrilateral surface patch parameterizations F(i) ∈ (Sp,r

h )3, i ∈ IΩ. Each parameteriza-
tion F(i), i ∈ IΩ, describes via

F(i) : [0, 1]2 → Ω(i),

1A multi-patch surface F is called G1-smooth if it possesses at each point a well-defined tangent plane,
cf. [36].

2Here, conforming means that no hanging nodes exists.
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Figure 1: Left: A multi-patch surface domain Ω consisting of three surface patches Ω(i), i ∈ {1, 2, 3}, with
their associated geometry mappings F(i). Right: The decomposition of the multi-patch surface domain Ω
into the individual patches Ω(i) (gray), curves Σ(i) (blue) and vertices x(i) (red).

a mapping, called the geometry mapping. The multi-patch surface F specifies a surface
domain Ω ⊂ R3, which can be represented as the disjoint union of the open quadrilateral
surface patches Ω(i), i ∈ IΩ, of open interface and boundary curves Σ(i), i ∈ IΣ, and of
inner and boundary vertices x(i), i ∈ Iχ, i.e.

Ω =

(⋃

i∈IΩ

Ω(i)

)
∪

(⋃

i∈IΣ

Σ(i)

)
∪


⋃

i∈Iχ

x(i)


 ,

where the curves Σ(i), i ∈ IΣ, are in each case the open boundary curve of at least one
surface patch parameterization F(j), j ∈ IΩ, and the vertices x(i), i ∈ Iχ, are in each case
the corner point of at least one surface patch parameterization F(j), j ∈ IΩ. In addition,
we decompose the index sets IΣ and Iχ into IΣ = I◦Σ∪IΓ

Σ and Iχ = I◦χ∪IΓ
χ , where I◦Σ and

IΓ
Σ are the index sets for all interface and boundary curves Σ(i), respectively, and where I◦χ

and IΓ
χ are the index sets for all inner and boundary vertices x(i), respectively. We further

denote by νi the patch valence of a vertex x(i), i ∈ Iχ. Note that in case of an inner vertex
x(i) ∈ I◦χ it always holds that νi ≥ 3.

The patch parameterizations F(i) induce a connectivity structure on the collection of
parameter domains. We denote by Ω̂ the disjoint union of all parameter domains imbued
with the connectivity information, similar to a parameter manifold as in [37], formally we
may write

Ω̂ = {(i, ξ) : i ∈ IΩ, ξ ∈ [0, 1]2}/ ∼,
where ∼ is the equivalence relation, with (i, ξ) ∼ (i′, ξ′), if and only if F(i)(ξ) = F(i′)(ξ′).
Note that such an equivalence relation can also be defined without underlying patch pa-
rameterizations. In the following we use the same notation for an element (i, ξ) and its
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equivalence class. We moreover define for each i ∈ IΩ the subset Ω̂(i) ⊂ Ω̂ as

Ω̂(i) = {(i, ξ) : ξ ∈ [0, 1]2}.

We also use the simplified notation ξ ∈ Ω̂(i) to signify an element (i, ξ) ∈ Ω̂(i). We can

now define a spline space on Ω̂ as

S = {f : Ω̂→ R s.t. f |Ω̂(i) ∈ Sp,r
h for all i ∈ IΩ}.

Here f |Ω̂(i) is to be interpreted as a function in ξ. Thus a C0-smooth multi-patch surface

F : Ω̂→ Ω is now formally defined as a mapping F ∈ (S)3.
An example of a three-patch surface F consisting of the single surface parameteriza-

tions F(i), i ∈ {1, 2, 3}, as well as the decomposition of the associated three-patch surface
domain Ω into the single patches Ω(i), i ∈ IΩ, curves Σ(i), i ∈ IΣ, and vertices x(i), i ∈ Iχ,
is shown in Figure 1.

2.2. Local parameterizations in standard form

To simplify the construction of the C1-smooth space in Section 3, we locally (re)pa-
rameterize in the vicinity of an interface/boundary curve Σ(i), i ∈ IΣ, or in the vicinity of
an inner/boundary vertex x(i), i ∈ Iχ, the geometry mappings F(ij) of the corresponding
surface patches Ω(ij) into the so-called standard form with respect to the curve Σ(i) or
vertex x(i). In the following, let us describe the local parameterizations in standard form
for the different possible cases.

In case of an interface curve Σ(i), i ∈ I◦Σ, with Σ(i) ⊂ Ω(i1) ∩ Ω(i2), i1, i2 ∈ IΩ, the two
associated geometry mappings F(i1) and F(i2) are (re)parameterized in such a way that the
common interface curve Σ(i) is given by

F(i1)(0, ξ) = F(i2)(ξ, 0), ξ ∈ (0, 1), (1)

see Figure 2 (left). Similarly, for a boundary curve Σ(i), i ∈ IΓ
Σ, with Σ(i) ⊂ Ω(i1), i1 ∈ IΩ,

we (re)parameterize the associated geometry mapping F(i1) in such a way that the boundary
curve Σ(i) is given by

Σ(i) = {F(i1)(0, ξ) : ξ ∈ (0, 1)},

see Figure 2 (right).
In case of an inner vertex x(i), i ∈ I◦χ, with patch valence νi, we label the patches and

interface curves around the vertex x(i) in counterclockwise order as Σ(i1), Ω(i2), Σ(i3), . . .,
Σ(i2νi−1), Ω(i2νi ), cf. Figure 3 (left), and further set Σ(i2νi+1) = Σ(i1) and Ω(i0) = Ω(i2νi ). We
(re)parameterize the associated geometry mappings F(i2k), k = 1, . . . , νi, in such a way
that each interface curve Σ(i2k+1), k = 1, . . . , νi − 1, is given by

F(i2k)(0, ξ) = F(i2k+2)(ξ, 0), ξ ∈ (0, 1),

and that the remaining interface curve Σ(i1) is given by

F(i2νi )(0, ξ) = F(i2)(ξ, 0), ξ ∈ (0, 1),
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ξ1

ξ2

Ω(i1)

Figure 2: Left: Parameterization of the two neighboring surface patches Ω(i1) and Ω(i2) in standard form
with respect to their common interface curve Σ(i). Right: Parameterization of the surface patch Ω(i1) in
standard form with respect to the boundary curve Σ(i).

which implies that

x(i) = F(i2)(0, 0) = F(i4)(0, 0) = . . . = F(i2νi )(0, 0),

cf. Figure 3 (left).
Similarly, we can perform a local (re)parameterization in standard form with respect to

a boundary vertex x(i), i ∈ IΓ
χ , with a patch valence νi ≥ 1. For this purpose, we label the

patches and interface/boundary curves around the vertex x(i) in counterclockwise order
as Σ(i1), Ω(i2), Σ(i3), . . ., Σ(i2νi−1), Ω(i2νi ), Σ(i2νi+1), cf. Figure 3 (right), where Σ(i1) and
Σ(i2νi+1) are boundary curves and Σ(i2k+1), k = 1, . . . , νi− 1, are interface curves. Then, the
associated geometry mappings F(i2k), k = 1, . . . , νi, are (re)parameterized in such a way
that each interface curve Σ(i2k+1), k = 1, . . . , νi − 1, is given by

F(i2k)(0, ξ) = F(i2k+2)(ξ, 0), ξ ∈ (0, 1),

which leads again to

x(i) = F(i2)(0, 0) = F(i4)(0, 0) = . . . = F(i2νi )(0, 0),

cf. Figure 3 (right).

2.3. Tools & operators for G1-smooth multi-patch surfaces

We need for the G1-smooth multi-patch surface F (and hence for its surface domain Ω)
specific tools and (differential) operators, which have been already studied for the single-
patch case in [2]. Let us consider first an arbitrary surface patch Ω(i), i ∈ IΩ, with its
geometry mapping F(i), and let us denote by ξ = (ξ1, ξ2) the coordinates with respect to
the parameter domain [0, 1]2. We define for the patch parameterization F(i) the Jacobian
J (i) : [0, 1]2 → R3×2 as

J (i)(ξ1, ξ2) =
[
∂1F

(i)(ξ1, ξ2) ∂2F
(i)(ξ1, ξ2)

]
, (2)

the coefficients G(i) : [0, 1]2 → R2×2 of the first fundamental form as

G(i)(ξ) =
(
J (i)(ξ)

)T
J (i)(ξ), (3)
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Figure 3: Left: Parameterization of surface patches Ω(i2), . . ., Ω(i2νi ) in standard form with respect to
their common inner vertex x(i). Right: Parameterization of surface patches Ω(i2), . . ., Ω(i2νi ) in standard
form with respect to their common boundary vertex x(i).

and the square root g(i) : [0, 1]2 → R of the determinant of G(i) as

g(i)(ξ) =
√

det (G(i)(ξ)). (4)

Let φ(i) ∈ C2(Ω(i)), and let v(i) ∈
[
C1(Ω(i))

]3
be a vector field. We write

φ(i)(x) =
(
ψ(i) ◦ (F(i))−1

)
(x), x ∈ Ω(i),

with ψ(i)(ξ) =
(
φ(i) ◦ F(i)

)
(ξ), and

v(i)(x) =
(
w(i) ◦ (F(i))−1

)
(x), x ∈ Ω(i),

with w(i)(ξ) =
(
v(i) ◦ F(i)

)
(ξ). Thanks to the invertibility of the geometry mapping F(i)

and to the equations (2), (3) and (4), the surface gradient ∇Ω(i)φ(i), the surface divergence
∇Ω(i) · v(i) and the Laplace-Beltrami operator ∆Ω(i)φ(i) over the surface patch Ω(i) can be
computed via

∇Ω(i)φ(i)(x) =
[
J (i)(G(i))−1∇ξψ

(i)
]
◦ (F(i))−1(x), x ∈ Ω(i),

∇Ω(i) · v(i)(x) =

[
1

g(i)
∇ξ ·

(
(G

(i)
0 )−1(F(i))Tw(i)

)]
◦ (F(i))−1(x), x ∈ Ω(i),

and

∆Ω(i)φ(i)(x) = ∇Ω(i) · (∇Ω(i)φ(i)(x)) =

[
1

g(i)
∇ξ ·

(
(G

(i)
0 )−1∇ξψ

(i)
)]
◦ (F(i))−1(x), x ∈ Ω(i),

respectively, where ∇ξ is the gradient with respect to the coordinates ξ and where

G
(i)
0 (ξ) =

1

g(i)(ξ)
G(i)(ξ).
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Let us consider now a function φ on Ω with φ|Ω(i) ∈ C2(Ω(i)), i ∈ IΩ, and a vector

field v over Ω with v|Ω(i) ∈
[
C1(Ω(i))

]3
, i ∈ IΩ. Then, the surface gradient ∇Ωφ, the

surface divergence ∇Ω · v and the Laplace-Beltrami operator ∆Ωφ over the entire multi-
patch surface Ω is just the collection of the single surface gradients ∇Ω(i)φ|Ω(i) , i ∈ IΩ, the
collection of the single surface divergences ∇Ω(i) · v|Ω(i) , i ∈ IΩ, and the collection of the
single Laplace-Beltrami operators ∆Ω(i)φ|Ω(i) , i ∈ IΩ, respectively.

2.4. The class of AS-G1 multi-patch surfaces and their skeletons

It is well-known that a C0-smooth multi-patch surface F is G1-smooth if and only if for
any two neighboring patches Ω(i1) and Ω(i2), i1, i2 ∈ IΩ, parameterized via the geometry
mappings F(i1) and F(i2) in standard form with respect to the common interface curve Σ(i) ⊂
Ω(i1) ∩ Ω(i2), cf. Figure 2 (left), there exists functions α(i,i1) : [0, 1]→ R, α(i,i2) : [0, 1]→ R
and β(i) : [0, 1]→ R satisfying

α(i,i1)(ξ)α(i,i2)(ξ) > 0, ξ ∈ [0, 1],

and

α(i,i1)(ξ) ∂2F
(i2)(ξ, 0) + α(i,i2)(ξ) ∂1F

(i1)(0, ξ) + β(i)(ξ) ∂2F
(i1)(0, ξ) = 0, ξ ∈ [0, 1], (5)

cf. [36]. Note that the functions α(i,i1), α(i,i2) and β(i) are uniquely determined up to a
common function γ(i) : [0, 1]→ R.

In this work, we are interested in a particular class of G1-smooth multi-patch surfaces,
called AS-G1 multi-patch surfaces. The definition of the class of AS-G1 multi-patch surfaces
is as follows [6]: A G1-smooth multi-patch surface F is analysis-suitable G1 (in short AS-

G1), if for each interface curve Σ(i), i ∈ I(i)
Σ , the functions α(i,i1) and α(i,i2) are linear

polynomials and if there further exists linear polynomials β(i,i1) : [0, 1] → R and β(i,i2) :
[0, 1]→ R such that

β(i)(ξ) = α(i,i1)(ξ) β(i,i2)(ξ) + α(i,i2)(ξ) β(i,i1)(ξ) ξ ∈ [0, 1]. (6)

Note that the linear polynomials β(i,i1) and β(i,i2) are in general not uniquely determined [6].
To obtain uniquely determined functions α(i,i1), α(i,i2), β(i,i1) and β(i,i2) for each interface

curve Σ(i), i ∈ I◦Σ, we select these functions in such a way that the functions α(i,i1) and
α(i,i2) are relatively prime and minimize

||α(i,i1) − 1||2L2([0,1]) + ||α(i,i2) − 1||2L2([0,1]),

and that the functions β(i,i1) and β(i,i2) minimize

||β(i,i1)||2L2([0,1]) + ||β(i,i2)||2L2([0,1]),

cf. [21]. In case of parametric C1 continuity across the interface curve Σ(i), i.e. β(i) ≡ 0
and α(i,i1) = α(i,i2), this would then lead just to β(i,i1) = β(i,i2) ≡ 0 and α(i,i1) ≡ α(i,i2) ≡ 1.
The functions α(i,i1), α(i,i2), β(i,i1) and β(i,i2) are also called the gluing data.
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We collect the gluing data for all interfaces in the set

G = {((i1, i2), α(i,i1), α(i,i2), β(i,i1), β(i,i2))i : i ∈ I◦Σ}.

Thus, the gluing data G encodes the entire G1-smoothness information of the multi-patch
surface F, as specified by (5)-(6) for a single interface in standard form.

Moreover, we collect the second order Taylor expansions of all patches around each
vertex, that is

T =
{(

(i2, i4, . . . , i2νi),F
(i2)
T ,F

(i4)
T , . . . ,F

(i2νi )

T

)
i

: i ∈ Iχ
}
,

with F
(i2k)
T ∈ (P2

2 )3 and k = 1, . . . , νi. Here we denote by P2
2 the space of bivariate

polynomials of total degree ≤ 2. If the vertex is in standard form, we have

∂`11 ∂
`2
2 F(i2k)(0, 0) = ∂`11 ∂

`2
2 F

(i2k)
T (0, 0)

for all `1, `2 ∈ Z+
0 with `1 +`2 ≤ 2. We define the AS-G1 skeleton of the multi-patch surface

F as
M = (Ω̂,G, T ).

Note that a skeleton can be defined without any underlying multi-patch surface. How-
ever, it is not clear which collection of local patches, AS-G1 gluing data and second order
vertex data actually allows the definition of a multi-patch surface, such that each patch
parameterization is regular. A necessary condition is that the local, second order vertex
data must be consistent with the gluing data, i.e., that the pairs of neighboring Taylor
expansions satisfy (5). The study of these consistency relations between interface gluing
data and second order vertex data will be the topic of future research. We assume from
now on that any skeleton is consistent, which is, e.g., the case if it is computed from a
given AS-G1 multi-patch parameterization.

The design of AS-G1 multi-patch parameterizations has been considered so far mainly
for the case of planar domains, see e.g. [6, 18–20]. As an exception, the method [19] has also
been used to generate a single example of an AS-G1 multi-patch surface. In Section 4, we
will extend this approach by a novel methodology to construct AS-G1 multi-patch surfaces.

2.5. The space of C1-smooth isogeometric spline functions

Considering a multi-patch surface F ∈ (S)3, with F(Ω̂) = Ω, the space of isogeometric
spline functions over Ω is given as

V =
{
ϕ ∈ C0(Ω) : ϕ ◦ F ∈ S

}
.

In the following we consider F to be an AS-G1 multi-patch surface. Then the space of
C1-smooth isogeometric spline functions over F is defined as

V1 = V ∩ C1(Ω).
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We have by definition

V1 =
{
ϕ ∈ C1(Ω) : ϕ ◦ F(i) ∈ Sp,r

h , i ∈ IΩ

}
.

The space V1 can be characterized by means of the graph Φ ⊂ Ω×R of an isogeometric
function ϕ ∈ V , which is the collection of the single graph surface patches Φ(i) : [0, 1]2 →
Ω(i) × R, i ∈ IΩ, given by

Φ(i)(ξ1, ξ2) =
[
F(i)(ξ1, ξ2) f (i)(ξ1, ξ2)

]T
,

with f (i) = ϕ ◦ F(i). Then, an isogeometric function ϕ ∈ V belongs to the space V1 if and
only if the associated graph Φ is G1-smooth [14]. In our multi-patch setting, the graph Φ
of an isogeometric function ϕ ∈ V is G1-smooth if and only if for any two neighboring
patches Ω(i1) and Ω(i2), i1, i2 ∈ IΩ, assuming that the two geometry mappings F(i1) and F(i2)

are given in standard form with respect to the common interface curve Σ(i) ⊂ Ω(i1) ∩Ω(i2),
cf. Figure 2 (left) and Section 2.2, the two associated graph surface patches Φ(i1) and Φ(i2)

satisfy
Φ(i1)(0, ξ) = Φ(i2)(ξ, 0), ξ ∈ [0, 1], (7)

and

α(i,i1)(ξ) ∂2Φ
(i2)(ξ, 0) + α(i,i2)(ξ) ∂1Φ

(i1)(0, ξ) + β(i)(ξ) ∂2Φ
(i1)(0, ξ) = 0, ξ ∈ [0, 1]. (8)

Since F is an AS-G1 multi-patch surface, the equations obtained by considering the first
three coordinates in equations (7) and (8) are trivially satisfied by (1) and (5), respectively,
and we directly obtain: An isogeometric function ϕ ∈ V belongs to the space V1, that is,
the function ϕ is C1-smooth on Ω, if and only if for any two neighboring patches Ω(i1) and
Ω(i2), i1, i2 ∈ IΩ, assuming that the two geometry mappings F(i1) and F(i2) are given in
standard form with respect to the common interface curve Σ(i) ⊂ Ω(i1) ∩Ω(i2), cf. Figure 2
(left) and Section 2.2, the two associated spline functions f (i1) = ϕ◦F(i1) and f (i2) = ϕ◦F(i2)

fulfill
f (i1)(0, ξ) = f (i2)(ξ, 0), ξ ∈ [0, 1], (9)

and

α(i,i1)(ξ) ∂2f
(i2)(ξ, 0) + α(i,i2)(ξ) ∂1f

(i1)(0, ξ) + β(i)(ξ) ∂2f
(i1)(0, ξ) = 0, ξ ∈ [0, 1]. (10)

Using equations (6) and (9), equation (10) is further equivalent to

∂1f
(i1)(0, ξ) + β(i,i1)(ξ)∂2f

(i1)(0, ξ)

α(i,i1)(ξ)
= −∂2f

(i2)(ξ, 0) + β(i,i2)(ξ)∂1f
(i2)(ξ, 0)

α(i,i2)(ξ)
, ξ ∈ [0, 1].

(11)

3. A C1-smooth isogeometric spline space defined by a skeleton

We present the design of a particular C1-smooth isogeometric spline space, which is
constructed from an AS-G1 skeleton M. It extends the construction of the C1-smooth
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multi-patch spline space [20, 21], which is limited to the planar case, to the surface case.
The obtained C1-smooth isogeometric spline space is a subspace of the full C1-smooth
spline space V1, is simpler to generate, has a dimension which depends only on p, r, h and
the multi-patch topology and possesses optimal approximation properties as the numerical
results in Section 5.2 indicate.

The idea is to generate a C1-smooth isogeometric spline space A ⊂ V1, which is given
by the direct sum

A =

(⊕

i∈IΩ

AΩ(i)

)
⊕

(⊕

i∈IΣ

AΣ(i)

)
⊕


⊕

i∈Iχ

Ax(i)


 , (12)

where the spaces AΩ(i) , AΣ(i) and Ax(i) are called patch, edge and vertex function spaces,
respectively, and correspond to the single patches Ω(i), i ∈ IΩ, edges (i.e. interface and
boundary curves) Σ(i), i ∈ IΣ, and vertices x(i), i ∈ Iχ, respectively. The construction of
the C1-smooth space A will need a small enough mesh size h, namely selected as h ≤ p−r−1

4−r .
Below, we first describe in detail the construction of the different spaces. While the

design of the patch function space AΩ(i) and of the edge function space AΣ(i) works anal-
ogously to the planar case [20, 21], the construction of the vertex function space Ax(i)

requires some adaptations. We define each space via its pullback to the parameter domain
Ω̂, denoted with a ·̂, i.e., Â = {f : Ω̂→ R | f ◦ F−1 ∈ A} ⊂ S.

3.1. Patch function space

Let i ∈ IΩ. We define the associated patch function space ÂΩ(i) : Ω̂→ R as

ÂΩ(i) = span{φ̂Ω(i),j : j ∈ {2, . . . , n− 3}2}

with

φ̂Ω(i),j(ξ) =

{
Np,r

j (ξ) if ξ ∈ Ω̂(i),

0 otherwise.

Given a skeleton M = (Ω̂,G, T ), the patch function spaces depend only on Ω̂ and are
independent of the edge gluing data G and vertex data T .

3.2. Edge function space

We distinguish between the case of an interface, that is, i ∈ I◦Σ, and of a boundary
curve, that is, i ∈ IΓ

Σ, of the multi-patch surface domain Ω. Let first i ∈ I◦Γ correspond to
an interface, such that its two neighboring patches have the indices i1, i2 ∈ IΩ. We assume
that the patches are given in standard form with respect to the interface, cf. Figure 2 (left)

and Section 2.2. The corresponding edge function space ÂΣ(i) is defined as

ÂΣ(i) = span{φ̂Σ(i),(j1,j2) : j1 ∈ {3− j2, . . . , nj2 − 4 + j2}, j2 ∈ {0, 1}}

with

φ̂Σ(i),(j1,j2)(ξ) =





f
(i1)

Γ(i),(j1,j2)
(ξ) if ξ ∈ Ω̂(i1),

f
(i2)

Γ(i),(j1,j2)
(ξ) if ξ ∈ Ω̂(i2),

0 otherwise,
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where

f
(i1)

Σ(i),(j1,0)
(ξ1, ξ2) = Np,r+1

j1
(ξ2)Mp,r

0 (ξ1)− β(i,i1)(ξ2)
(
Np,r+1
j1

)′
(ξ2)Mp,r

1 (ξ1),

f
(i2)

Σ(i),(j1,0)
(ξ1, ξ2) = Np,r+1

j1
(ξ1)Mp,r

0 (ξ2)− β(i,i2)(ξ1)
(
Np,r+1
j1

)′
(ξ1)Mp,r

1 (ξ2),

and
f

(i1)

Σ(i),(j1,1)
(ξ1, ξ2) = α(i,i1)(ξ2)Np−1,r

j1
(ξ2)Np,r

1 (ξ1),

f
(i2)

Σ(i),(j1,1)
(ξ1, ξ2) = −α(i,i2)(ξ1)Np−1,r

j1
(ξ1)Np,r

1 (ξ2).

Let now i ∈ IΓ
Σ correspond to a boundary curve of the patch with index i1 ∈ IΩ.

Assume again that the patch is given in standard form with respect to the boundary
curve, cf. Figure 2 (right) and Section 2.2. The associated edge function space ÂΣ(i) is
given by

ÂΣ(i) = span{φ̂Σ(i),(j1,j2) : j1 ∈ {3− j2, . . . , nj2 − 4 + j2}, j2 ∈ {0, 1}}

with

φ̂Σ(i),(j1,j2)(ξ) =

{
f

(i1)

Γ(i),(j1,j2)
(ξ) if ξ ∈ Ω̂(i1),

0 otherwise,

where again

f
(i1)

Σ(i),(j1,0)
(ξ1, ξ2) = Np,r+1

j1
(ξ2)Mp,r

0 (ξ1)− β(i,i1)(ξ2)
(
Np,r+1
j1

)′
(ξ2)Mp,r

1 (ξ1),

and
f

(i1)

Σ(i),(j1,1)
(ξ1, ξ2) = α(i,i1)(ξ2)Np,r−1

j1
(ξ2)Np,r

1 (ξ1).

Here the gluing data α(i,i1) and β(i,i1) can be simply selected as

α(i,i1)(ξ) = 1 and β(i,i1)(ξ) = 0,

respectively, resulting in

f
(i1)

Σ(i),(j1,0)
(ξ1, ξ2) = Np,r+1

j1
(ξ2)Mp,r

0 (ξ1),

and
f

(i1)

Σ(i),(j1,1)
(ξ1, ξ2) = Np,r−1

j1
(ξ2)Np,r

1 (ξ1).

Given a skeletonM = (Ω̂,G, T ), the edge function spaces depend only on Ω̂ and the edge
gluing data G and are independent of the vertex data T .
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3.3. Vertex function space

The construction of the vertex function space Ax(i) , for i ∈ Iχ, is derived from the
planar construction developed in [20, 21]. There, for each vertex, six vertex functions are
constructed as linear combinations of patch and modified edge functions in the vicinity of
the considered vertex, where the corresponding scalar coefficients are determined by a C2

interpolation problem at the vertex. As a consequence, the resulting vertex functions are
not only C1-smooth on the planar multi-patch domain, they are even C2-smooth at the
corresponding vertex. The imposed C2-interpolation problem ensures a uniform construc-
tion of the vertex function space, such that its dimension is independent of the valence
of the vertex and independent of the given patch parameterizations in the vicinity of the
vertex. Here we follow this idea and adapt it appropriately. More precisely, we also gen-
erate six vertex functions for each vertex as linear combinations of patch and modified
edge functions in the vicinity of the considered vertex. In contrast to the planar case, we
construct the space by interpolation with respect to a projection of the local Taylor ex-
pansions onto the tangent plane at the vertex. Thus, we do not enforce a C2-interpolation
at the vertex with respect to the multi-patch surface domain Ω, which would require an
underlying G1-smooth multi-patch surface which additionally must be G2-smooth at the
vertex, and we would like to avoid this additional restriction.

Let us consider now the construction of the vertex function space Âx(i) in detail. For
this purpose, we distinguish between the case of an inner vertex with i ∈ I◦χ and of a
boundary vertex with i ∈ IΓ

χ . We first consider an inner vertex with index i ∈ I◦χ and

valence νi, with the sequence of surface patches and interface curves Σ(i1), Ω(i2), Σ(i3), . . .,
Σ(i2νi−1), Ω(i2νi ) around the vertex in counterclockwise order in standard form, cf. Figure 3
(left) and Section 2.2.

In addition, let F
(i2`)
P ∈ (P2

2 )2, ` = 1, . . . , νi, be the patch parameterizations, which are

obtained by first rotating the Taylor expansions F
(i2`)
T , ` = 1, . . . , νi, in such a way that

their normal vectors at the vertex are parallel to the x3-axis, and then by omitting the
third component. Note that the resulting patch parameterizations F

(i2`)
P , ` = 1, . . . , νi,

locally represent the tangent plane at the vertex, which we denote by

ΩP = ∪2νi
`=1Ω

(i2`)
P with Ω

(i2`)
P = F

(i2`)
P ((0, 1)2).

We further denote by xP = (xP1 , x
P
2 ) the global coordinates of ΩP , by Σ

(i2`−1)
P , ` = 1, . . . , νi,

the corresponding interface curves Σ
(i2`−1)
P , and by x

(i)
P the corresponding vertex x(i) in ΩP .

Thanks to the performed rotation and projection, the gluing data is consistent with the
planar patch parameterizations F

(i2`)
P if the skeleton was consistent.

For each interface curve Σ
(i`)
P , ` = 1, 3, . . . , 2νi − 1, we define the vector functions

t(i`)(ξ) = ∂2F
(i`−1)
P (0, ξ) = ∂1F

(i`+1)
P (ξ, 0)

and
d(i`)(ξ) = 1

α(i`,i`−1)(ξ)

(
∂1F

(i`−1)
P (0, ξ) + β(i`,i`−1)(ξ) ∂2F

(i`−1)
P (0, ξ)

)

= − 1

α(i`,i`+1)(ξ)

(
∂2F

(i`+1)
P (ξ, 0) + β(i`,i`+1)(ξ) ∂1F

(i`+1)
P (ξ, 0)

)
.
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For a vector a =
[
a0,0 a1,0 a0,1 a2,0 a1,1 a0,2

]
∈ R6, we define for each patch Ω

(i`)
P ,

` ∈ {2, 4 . . . , 2νi}, the function

f
(i`)

x(i),a
(ξ1, ξ2) = g

(i`−1,i`)

x(i),a
(ξ1, ξ2) + g

(i`+1,i`)

x(i),a
(ξ1, ξ2)− g(i`)

x(i),a
(ξ1, ξ2)

with the single functions

g
(i`+1,i`)

x(i),a
(ξ1, ξ2) =

2∑

j=0

d
(i`+1,i`)

a,(0,j)

(
Mp,r+1

j (ξ2)Mp,r
0 (ξ1)− β(i`+1,i`)(ξ2)(Mp,r+1

j )′(ξ2)Mp,r
1 (ξ1)

)

+
1∑

j=0

d
(i`+1,i`)

a,(1,j) α(i`+1,i`)(ξ2)Mp−1,r
j (ξ2)Mp,r

1 (ξ1),

g
(i`−1,i`)

x(i),a
(ξ1, ξ2) =

2∑

j=0

d
(i`−1,i`)

a,(0,j)

(
Mp,r+1

j (ξ1)Mp,r
0 (ξ2)− β(i`−1,i`)(ξ1)(Mp,r+1

j )′(ξ1)Mp,r
1 (ξ2)

)

−
1∑

j=0

d
(i`−1,i`)

a,(1,j) α(i`−1,i`)(ξ1)Mp−1,r
j (ξ1)Mp,r

1 (ξ2),

and

g
(i`)

x(i),a
(ξ1, ξ2) =

1∑

j1=0

1∑

j2=0

d
(i`)
a,(j1,j2)M

p,r
j1

(ξ1)Mp,r
j2

(ξ2),

where the corresponding coefficients are given by

d
(im,i`)
a,(0,0) = a0,0, d

(im,i`)
a,0,1 = ba t(im)(0), d

(im,i`)
a,0,2 = (t(im)(0))T Ha t(im)(0) + ba (t(im))′(0),

d
(im,i`)
a,(1,0) = ba d(im)(0), d

(im,i`)
a,(1,1) = (t(im)(0))T Ha d(im)(0) + ba (d(im))′(0),

for m = `− 1, `+ 1, and

d
(i`)
a,(0,0) = a0,0, d

(i`)
a,(1,0) = ba t(i`−1)(0), d

(i`)
a,(0,1) = ba t(i`+1)(0)

d
(i`)
a,(1,1) = (t(i`−1)(0))T Ha t(i`+1)(0) + ba ∂1∂2F

(i`)
P (0, 0),

where ba is further the vector ba =
[
a1,0 a0,1

]
and Ha is the matrix

Ha =

[
a2,0 a1,1

a1,1 a0,2

]
.

Moreover, we consider the six vectors

a(0,0) = (1, 0, 0, 0, 0, 0), a(1,0) = (0, 1, 0, 0, 0, 0), a(0,1) = (0, 0, 1, 0, 0, 0),

a(2,0) = (0, 0, 0, 1, 0, 0), a(1,1) = (0, 0, 0, 0, 1, 0), a(0,2) = (0, 0, 0, 0, 0, 1),
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and specify the factor

σ =

(
h

p νi

ν∑

`=1

‖∇F
(i2`)
P (0, 0)‖

)−1

,

which will be used to uniformly scale the vertex functions with respect to the L∞-norm.
The vertex function space Âx(i) is defined as

Âx(i) = span{φ̂x(i),(j1,j2) : 0 ≤ j1, j2 ≤ 2, j1 + j2 ≤ 2}, (13)

where

φ̂x(i),(j1,j2)(ξ) =

{
σj1+j2f

(i`)

x(i),a(j1,j2)
(ξ) if ξ ∈ Ω̂(i`), ` = 2, 4, . . . , 2νi,

0 otherwise.
(14)

Let now x(i), i ∈ IΓ
χ , be a boundary vertex of patch valence νi with the sequence of

surface patches and interface/boundary curves Σ(i1), Ω(i2), Σ(i3), . . ., Ω(i2νi ), Σ(i2νi+1) around
the vertex x(i) in counterclockwise order, where Σ(i1) and Σ(i2νi+1) represent the boundary
curves, given in standard form, cf. Figure 3 (right) and Section 2.2. The construction of

the functions φ̂x(i),(j1,j2), 0 ≤ j1, j2 ≤ 2 with j1 + j2 ≤ 2 works analogously as for the case of

an inner vertex via (14) and (13), respectively, by selecting the gluing data α(i1,i2), β(i1,i2)

and α(i2νi+1,i2νi ), β(i2νi+1,i2νi ) of the boundary curves as

α(i1,i2)(ξ) = 1, β(i1,i2)(ξ) = 0,

and
α(i2νi+1,i2νi )(ξ) = 1, β(i2νi+1,i2νi )(ξ) = 0,

respectively.

Remark 1. The functions φ̂x(i),(j1,j2) yield functions φ
x

(i)
P ,(j1,j2)

on ΩP through

φ
x

(i)
P ,(j1,j2)

= φ̂x(i),(j1,j2) ◦ F−1
P .

By construction the functions are C1-smooth on ΩP and C2-smooth at the vertex x
(i)
P . The

C1-continuity on ΩP is a direct consequence of the fact that a function φ
x

(i)
P ,(j1,j2)

simpli-

fies in the vicinity of an interface curve Σ
(i`)
P , ` = 1, 3, . . . , 2νi − 1, on the patch Ω

(i`−1)
P

to g
(i`,i`−1)

x(i),a(j1,j2)
◦
(
F

(i`−1)
P

)−1

and on the patch Ω
(i`+1)
P to g

(i`,i`+1)

x(i),a(j1,j2)
◦
(
F

(i`+1)
P

)−1

, where the

simplified function at the interface curve Σ
(i`)
P represents a linear combination of modi-

fied edge functions which is C1-smooth across the interface curve Σ
(i`)
P , since the func-

tions g
(i`,i`−1)

x(i),a(j1,j2)
and g

(i`,i`+1)

x(i),a(j1,j2)
fulfill the C1-continuity conditions (9) and (11). The

C2-continuity at the vertex x
(i)
P is obtained by interpolating the C2 data given by the

vectors a(j1,j2), 0 ≤ j1, j2 ≤ 2 with j1 + j2 ≤ 2, which directly implies that

∂m1

xP1
∂m2

xP2

(
φ
x

(i)
T ,(j1,j2)

)
(x

(i)
P ) = σj1+j2δm1

j1
δm2
j2

for 0 ≤ m1,m2 ≤ 2 with m1 +m2 ≤ 2, compare also [20, 21].

16



3.4. The C1-smooth space A
In the previous subsections we defined patch, edge and vertex spaces on the multi-patch

parameter domain Ω̂. By construction, we have the following.

Lemma 1. Let Λ be the set of all patch function spaces ÂΩ(i), i ∈ IΩ, edge function
spaces ÂΣ(i), i ∈ IΣ, and vertex function spaces Âx(i), i ∈ Iχ. For any two different

spaces Â1, Â2 ∈ Λ, it holds that
Â1 ∩ Â2 = {0}.

Due to Lemma 1 we can define the space Â as the direct sum of the local spaces

Â =

(⊕

i∈IΩ

ÂΩ(i)

)
⊕

(⊕

i∈IΣ

ÂΣ(i)

)
⊕


⊕

i∈Iχ

Âx(i)


 ⊂ S, (15)

where S is the C0-smooth multi-patch spline space on the parameter domain Ω̂. Given a
multi-patch parameterization F ∈ (Â)3 we can define the isogeometric space

A =
{
ϕ ∈ C0(Ω) : ϕ ◦ F ∈ Â

}
.

Similarly, we can define the subspaces AΩ(i) , AΣ(i) and Ax(i) that yield the direct sum
as in (12) and their basis functions φΩ(i),j, φΣ(i),j and φx(i),j, respectively, through the
mapping F. By construction we have that all patch functions are C1-smooth on Ω.

Lemma 2. Let i ∈ IΩ. It holds that

AΩ(i) ⊂ V1.

Proof. All functions φΩ(i),j, j ∈ {2, . . . , n − 3}2, fulfill that supp
(
φΩ(i),j

)
⊂ Ω(i) and that

φΩ(i),j(x) = ∇φΩ(i),j(x) = 0 for x ∈ ∂Ω(i), which trivially implies that AΩ(i) ⊂ V1.

Similarly, all edge functions are C1-smooth.

Lemma 3. Let i ∈ IΣ. We have that

AΣ(i) ⊂ V1.

Proof. In case of an interface curve Σ(i), that is, i ∈ I◦Σ, all functions φΣ(i),(j1,j2), j1 =

3 − j2, . . . , nj2 − 4 + j2, j2 = 0, 1, satisfy that supp
(
φΣ(i),j

)
⊂ Ω(i1) ∪ Ω(i1) and that

φΣ(i),j(x) = ∇φΣ(i),j(x) = 0 for x ∈ ∂
(

Ω(i1) ∪ Ω(i1)
)

. In addition, their associated spline

functions f (i1) = φΣ(i),j ◦F(i1) = f
(i1)

Σ(i),j
and f (i2) = ϕ ◦F(i2) = f

(i2)

Σ(i),j
fulfill the C1-continuity

conditions (9) and (11) across the interface curve Σ(i), which further leads to AΣ(i) ⊂ V1.
In case of a boundary curve Σ(i), that is, i ∈ IΓ

Σ, we trivially obtain that AΣ(i) ⊂ V1,
since for all functions φΣ(i),(j1,j2), j1 = 3− j2, . . . , nj2 − 4 + j2, j2 = 0, 1, we have that that

supp
(
φΣ(i),j

)
⊂ Ω(i) and that φΣ(i),j(x) = ∇φΣ(i),j(x) = 0 for x ∈ ∂Ω(i) \ Σ(i).
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Similar to the planar case, the vertex functions are C1-smooth, now on the multi-patch
surface domain Ω, but in contrast to the planar construction as in [20, 21] in general not
additionally C2-smooth at the corresponding vertex x(i).

Lemma 4. Let i ∈ Iχ. It holds that

Ax(i) ⊂ V1.

Proof. Let us consider first the case of an inner vertex x(i), that is, i ∈ I◦χ. Since all six
functions φx(i),(j1,j2), 0 ≤ j1, j2 ≤ 2 with j1 + j2 ≤ 2, are C1-smooth across the interface

curves Σ(i`), ` = 1, 3, . . . , 2νi− 1, and further fulfill that supp
(
φx(i),(j1,j2)

)
⊂ ∪νi`=1Ω(i2`) and

that φx(i),(j1,j2)(x) = ∇φx(i),(j1,j2)(x) = 0 for x ∈ ∂
(
∪νi`=1Ω(i2`)

)
, we directly obtain that

Ax(i) ⊂ V1.
Similarly, we also obtain Ax(i) ⊂ V1 for the case of a boundary vertex x(i), that is,

i ∈ IΓ
χ , because all six functions φx(i),(j1,j2), 0 ≤ j1, j2 ≤ 2 with j1 + j2 ≤ 2, are C1-smooth

across the interface curves Σ(i`), ` = 3, 5, . . . , 2νi− 1, are only supported in ∪νi`=1Ω(i2`), and
possess vanishing values and gradients at all interface and boundary curves except at the
interface and boundary curves Σ(i`), ` = 1, 3, . . . , 2νi + 1.

Summarizing the above we obtain:

Theorem 1. The space A, given by the direct sum (12), is a subspace of the C1-smooth

space V1, i.e A ⊂ V1. Moreover, the patch functions φ
(i)

Ω(i),j
, j ∈ {2, . . . , n − 3}2, i ∈ IΩ,

the edge functions φΣ(i),(j1,j2), j1 = 3− j2, . . . , nj2 − 4 + j2, j2 = 0, 1, i ∈ IΣ, and the vertex
functions φx(i),(j1,j2), 0 ≤ j1, j2 ≤ 2 and j1 + j2 ≤ 2, i ∈ Iχ, form a basis of the space A,
and the dimension of A is equal to

dimA =
∑

i∈IΩ

dimAΩ(i) +
∑

i∈IΣ

dimAΣ(i) +
∑

i∈Iχ

dimAx(i)

with
dimAΩ(i) = ((p− r)(k − 1) + p− 3)2 ,

dimAΩ(i) = (2(p− r − 1)(k − 1) + p− 9)

and
dimAΩ(i) = 6.

Proof. A ⊂ V1 is a direct consequence of Lemma 2, 3 and 4. Since the the patch functions
φ

(i)

Ω(i),j
, j ∈ {2, . . . , n−3}2, the edge functions φΣ(i),(j1,j2), j1 = 3−j2, . . . , nj2−4+j2, j2 = 0, 1,

and the vertex functions φx(i),(j1,j2), 0 ≤ j1, j2 ≤ 2 with j1 +j2 ≤ 2, are linearly independent
by definition and/or construction for the corresponding patch function space AΩ(i) , i ∈ IΩ,
edge function space AΣ(i) , i ∈ IΣ, and vertex function space Ax(i) , i ∈ Iχ, respectively, and
due to direct sum (12), all patch, edge and vertex functions form together a basis of the
space A. This further directly implies the dimensions of the individual patch, edge and
vertex function spaces and hence of the C1-smooth space A.
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4. Design of AS-G1 multi-patch surfaces

We present a novel methodology for the construction of AS-G1 multi-patch surfaces. For
this purpose, we first introduce a general framework to generate AS-G1 multi-patch surfaces
and then describe two specific design methods which are based on this methodology.

4.1. General framework for the construction of AS-G1 multi-patch surfaces

We consider the following problem: Given a G1-smooth but non-AS-G1 multi-patch
surface R over the multi-patch parameter domain Ω̂, we aim to generate an AS-G1 multi-
patch surface F over the same parameter domain Ω̂, with suitable gluing data G and
vertex data T , such that F ∈ (Â)3, where Â is constructed from the AS-G1 skeleton

M = (Ω̂,G, T ), which approximates the multi-patch surface R as good as possible. Our
proposed strategy for solving the stated problem consists of two main steps:

Step 1: Computation of an AS-G1 skeleton from a multi-patch template parameterization.
Given the parameter domain Ω̂ of R we choose an AS-G1 multi-patch parameterization F̃
over Ω̂, which will play the role of a template parameterization in the L2-projection pro-
cedure in Step 2. In case of an open planarizable surface R, a planar AS-G1 multi-patch
template can be used, for which several design methods such as the techniques developed
in [19, 20] exist (compare also Section 4.2.1). In case of a closed surface which is topologi-
cally equivalent to a sphere, a closed AS-G1 multi-patch surface as the one in Example 6,
first constructed in [19, Example 5], could be employed. From such a multi-patch tem-

plate F̃ we extract the skeleton M.

Step 2: Construction of the AS-G1 multi-patch surface via L2-projection. Let F̃ be the
template from Step 1 and let M be its skeleton. We denote by Ω̃ the surface domain
obtained from F̃, i.e., Ω̃ = F̃(Ω̂). Following the construction proposed in Section 3, we

generate the space Â of degree p = (p, p), regularity r = (r, r) and mesh size h from the

skeleton M, such that F̃ ∈ (Â)d, with d ∈ {2, 3}. Let {φj}j∈J , J = {1, . . . dimA}, be

the basis of the corresponding isogeometric spline space A over Ω̃. We now construct the
desired AS-G1 multi-patch surface F through finding a mapping U, with U ∈ (A)3, such
that

F = U ◦ F̃,

with
U(x) =

∑

j∈J

djφj(x), dj =
[
dj,1 dj,2 dj,3

]T ∈ R3, x ∈ Ω̃.

Thus we determine the unknown coefficients dj via L2-projection by minimizing the ob-
jective function ∥∥∥U−R ◦ F̃−1

∥∥∥
2

L2(Ω̃)
,

which results in minimizing the error for each component via

∑

i∈IΩ

∫

[0,1]2

(
F

(i)
` (ξ)−R(i)

` (ξ)
)2

g̃(i)(ξ)dξ, ` = 1, 2, 3,
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where g̃(i) is the square root of the determinant of the coefficients of the first fundamental
form of the surface patch parameterization F̃(i), cf. Section 2.3. We denote by R

(i)
` the `-th

component of the i-th patch of R. The mappings R, F̃ and U are visualized in Figure 4.

[0, 1]2[0, 1]2

[0, 1]2

[0, 1]2

[0, 1]2

Ω̃
Ω̂

Ω

U

F̃

R

Figure 4: A schematic overview of the mappings involved in the construction framework. The parameter
domain Ω̂ is formed by five unit squares, where the equivalence relation is visualized through colors, i.e.,
each point on a colored edge corresponds to a point on another edge of the same color. The corresponding
interfaces are shown in the same color, both on the template domain Ω̃ and on the target domain Ω.
Boundary edges are shown as black lines.

In case that the resulting AS-G1 multi-patch surface F does not approximate the initial
surface R as good as wanted, we can just perform h- or p-refinement for the C1-smooth
spline space Â to improve the approximation.

Remark 2. The general framework for the construction of AS-G1 multi-patch surfaces
is not limited to G1-smooth multi-patch surfaces, but can be also directly applied to any
(approximately) smooth surface which can be approximated as a first step by a G1-smooth
multi-patch surface. A first such possible example is a trimmed surface which can be
represented after an untrimming procedure, see e.g. [32], by a multi-patch surface, compare
also Section 4.2.2. A subdivision surface is another possible example, see e.g. [30], but this
case will not be further studied in this work.

4.2. Methods for the design of AS-G1 multi-patch surfaces

We describe two specific methods for the construction of AS-G1 multi-patch surfaces
which are based on the general framework introduced in the previous subsection.
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4.2.1. AS-G1 multi-patch surfaces for graph surfaces

We present a technique to generate an AS-G1 multi-patch surface by approximating a
graph of a function given over a planar multi-patch domain. Let Ω̃ be the planar multi-
patch domain, and let F̃ with the single geometry mappings F̃(i), i ∈ IΩ, be a planar
AS-G1 multi-patch parameterization which represents the planar multi-patch domain Ω̃.
Note that such a planar AS-G1 multi-patch geometry F̃ can be constructed e.g. by means
of the method [19]. We consider a smooth function z : Ω̃→ R, which defines via

R(x̃) =
[
x̃ z(x̃)

]T
, x̃ = (x̃1, x̃2) ∈ Ω̃,

a surface in R3, the so-called graph surface of the function z over the planar multi-patch
domain Ω̃. The resulting graph surface R represents also a multi-patch surface via the
single surface patch parameterizations R(i), i ∈ IΩ, which are given by

R(i)(ξ) =
[
F̃(i)(ξ)

(
z ◦ F̃(i)

)
(ξ)
]T
.

The goal is now to find an AS-G1 multi-patch surface F with surface patch parameteriza-
tions F(i), i ∈ IΩ, which approximates the multi-patch surface R as good as possible. For
this purpose, we first generate the C1-smooth isogeometric spline space A over the planar
multi-patch parameterization F̃ for some degree p = (p, p), regularity r = (r, r) and mesh
size h by using the method [21], or equivalently by following the construction from Section 3

by just extending the planar multi-patch parameterization F̃ to a third coordinate which
is set to be zero. We denote again by {φj}j∈J the basis of A. As a slight modification
to the general framework from the previous subsection, we have now just to approximate
the third coordinate function of the multi-patch surface R, since the first two coordinates
already satisfy by definition the AS-G1 condition (5). That is, we build the AS-G1 multi-
patch surface F by constructing the single surface patch parameterizations F(i), i ∈ IΩ,
as

F(i)(ξ) =
[
F

(i)
1 (ξ) F

(i)
2 (ξ) F

(i)
3 (ξ)

]
=
[
F̃(i)(ξ)

(
u ◦ F̃(i)

)
(ξ)
]

with
u(x) =

∑

j∈J

djφj(x), dj ∈ R, x ∈ Ω̃,

by selecting the unknown coefficients dj via minimizing

∑

i∈IΩ

∫

[0,1]2

(
F

(i)
3 (ξ)−R(i)

3 (ξ)
)2

g̃(i)(ξ)dξ,

where g̃(i) is as in the general framework above the square root of the determinant of the
coefficients of the first fundamental form of the patch parameterization F̃(i), cf. Section 2.3.

In the following example, we use the presented method to construct AS-G1 multi-patch
surfaces which approximate a portion of a sphere.
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Example 1. We construct the three AS-G1 multi-patch surfaces F`, ` = 1, 2, 3, shown in
Figure 5 (second row, from left to right), from the three planar multi-patch parameteriza-

tions F̃`, ` = 1, 2, 3, given in Figure 5 (first row, from left to right), by approximating the
function

z(x̃1, x̃2) =
√

6− x̃2
1 − x̃2

2.

While the four-patch parameterization F̃1 (Figure 5, first row, left) and the six-patch

parameterization F̃2 (Figure 5, first row, middle) are bilinearly parameterized and hence

trivially AS-G1, the five-patch parameterization F̃3 (Figure 5, first row, right) is an AS-
G1 five patch geometry constructed by the method [19], which approximates a disk and

consists of patch parameterizations F̃
(i)
` ∈ (Sp,r

h )
2

with p = (3, 3), r = (1, 1) and h = 1
3
.

All three resulting AS-G1 multi-patch surfaces F`, ` = 1, 2, 3, approximate then a portion
of a sphere and consist of surface patch parameterizations F

(i)
` belonging to the space

(Sp,r
h )

3
with p = (3, 3), r = (1, 1) and h = 1

3
, see Figure 5 (second row). In Example 5,

the constructed AS-G1 multi-patch surfaces F`, ` = 1, 2, 3, will be employed to solve the
biharmonic equation over them.

4.2.2. AS-G1 multi-patch surfaces for trimmed surfaces

We can use the general framework from Section 4.1 to approximate a trimmed smooth
surface by an AS-G1 multi-patch surface. Let St be a trimmed smooth surface which is
defined via a trimmed parameter domain Dt and a smooth tensor-product spline surface S
with parameter domain D ⊃ Dt. By using e.g. the untrimming technique [32], we can
represent the trimmed smooth surface St by a smooth multi-patch surface R consisting

of single surface patch parameterizations R(i) ∈
(
Sp′,r′

h′

)3

, i ∈ IΩ. This is done by first

describing the trimmed parameter domain Dt by a planar multi-patch parameterization,
and then by using this parameterization to construct the smooth multi-patch surface R.
Afterwards, by directly applying the general framework from Section 4.1, we can approx-
imate the multi-patch surface R by an AS-G1 multi-patch surface F consisting of surface
patch parameterizations F(i) ∈ (Sp,r

h )
3
, i ∈ IΩ, with some degree p = (p, p), regularity

r = (r, r), mesh size h and with the same index set IΩ as for the multi-patch surface R.
In case that the surface S possesses a polynomial representation, the construction of

the AS-G1 multi-patch surface F can be simplified as follows. We generate first again a
planar multi-patch parameterization of the trimmed parameter domain Dt e.g. by means
of the method [32]. But then in contrast, we already reparameterize the resulting planar
multi-patch parameterization by an AS-G1 planar multi-patch geometry e.g. by using the
technique [19]. Let F̃ now be the constructed AS-G1 planar multi-patch parameterization

with the single surface patch parameterizations F̃(i), i ∈ IΩ, then we obtain by F(i) =
S◦F̃(i), i ∈ IΩ, an AS-G1 multi-patch surface F. In the following example, we demonstrate
the potential of this simplified design method.

Example 2. Let S be the surface

S(u1, u2) =
[
u1 u2 1− u2

1 − u2
2

]T
(16)
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Four-patch surface Six-patch surface Five-patch surface

Figure 5: Example 1. Design of three different AS-G1 multi-patch surfaces which approximate a portion
of a sphere. First row: Associated planar multi-patch domains. Second and third row: Two views of the
resulting AS-G1 multi-patch surfaces.
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(-1,-1)

(-1,1) (1,1)

(1,-1) (-1,-1)

(-1,1) (1,1)

(1,-1)

Figure 6: Example 2. Design of an AS-G1 four-patch surface from a trimmed surface. First row: Trimmed
and untrimmed parameter domain. Second row: Two views of the resulting AS-G1 four-patch surface.

given with respect to the parameter domain D = [−1, 1]2. We consider the trimmed sur-
face St, which is defined via the surface S and the trimmed parameter domain Dt obtained
by cutting out from the parameter domain D an approximated disk whose boundary is
represented by a B-spline curve of degree 2, see Figure 6 (first row, left). From the trimmed
parameter domain Dt, we construct an untrimmed parameter domain described by a pla-
nar AS-G1 four-patch parameterization F̃, consisting of the four-patch parameterizations
F̃(i), i = 1, . . . , 4, with F̃(i) ∈ (Sp,r

h )
2
, p = (2, 2), r = (1, 1) and h = 1

4
, see Figure 6

(first row, right). The untrimmed parameter domain then defines an AS-G1 four-patch

parameterization F consisting of the single surface patch parameterizations F(i) = S ◦ F̃(i),
i = 1, . . . , 4, with F(i) ∈ (Sp,r

h )
3
, p = (4, 4), r = (1, 1) and h = 1

4
, see Figure 6 (second

row). In Example 4, we will solve the biharmonic equation over the constructed AS-G1

multi-patch surface F.

5. Numerical experiments

We employ the C1-smooth isogeometric functions from Section 3 to solve the biharmonic
equation over different AS-G1 multi-patch surfaces (see Examples 3–6 in Section 5.2), where
we revisit the AS-G1 multi-patch surfaces constructed in Example 1 and 2 in Section 4. In
doing so, we will demonstrate on the one hand the potential of the generated C1-smooth
isogeometric functions to solve fourth order partial differential equations over multi-patch
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surfaces and will numerically investigate on the other hand the approximation properties
of the associated C1-smooth space A. For this purpose, we study before in Section 5.1 two
slightly different model problems of the biharmonic equation which are adopted according
to whether an open or closed multi-patch surface is used, and present for these problems an
isogeometric Galerkin discretization using the constructed globally C1-smooth functions.

5.1. Biharmonic equation & isogeometric Galerkin discretization

The proposed Galerkin discretization for solving the biharmonic equation over an open
or closed multi-patch surface is based on the one in [2], but generalizes this approach in
two directions: On the one hand, we have to deal with multi-patch surfaces, and on the
other hand, we have to handle non-homogeneous boundary conditions for some examples.
For this, we distinguish between the case of an open and closed multi-patch surface.

5.1.1. The model problem for open surfaces

In case of an open surface (Examples 3–5), we deal with the biharmonic equation
possessing some specified boundary conditions. The considered problem in strong form
reads as: Find u : Ω→ R such that





∆2
Ω u(x) = f(x), x ∈ Ω,

u(x) = g1(x), x ∈ ∂Ω,

∂nu(x) = g2(x), x ∈ ∂Ω,

(17)

where ∂nu = ∇Ωu · n is the normal derivative and n is the outward unit normal vector
on the boundary ∂Ω which is orthogonal both to the normal vector of the surface and to
the tangent vector of the boundary curve ∂Ω, f is the force function in Ω and g1 and g2

are two functions given on the boundary ∂Ω describing the boundary conditions for u and
∂nu, respectively. The weak formulation of the problem (17) is to find u ∈ H2

g (Ω) such
that

a(u, v0) = F (v0), for all v0 ∈ H2
0 (Ω), (18)

where a is a bilinear form and F is a linear functional, of the form

a : H0
g (Ω)×H2

0 → R, a(u, v0) =

∫

Ω

∆Ωu(x)∆Ωv0(x) dΩ,

and

F : H2
0 (Ω)→ R, F (v0) =

∫

Ω

f(x)v0(x) dΩ,

respectively, and where the spaces H2
g (Ω) and H2

0 (Ω) are given as

H2
g (Ω) =

{
v ∈ H2(Ω) | v(x) = g1(x) and ∂nv(x) = g2(x) for x ∈ ∂Ω

}

and
H2

0 (Ω) =
{
v ∈ H2(Ω) | v(x) = 0 and ∂nv(x) = 0 for x ∈ ∂Ω

}
,
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respectively. Problem (18) is equivalent to compute u = ug+u0, with ug ∈ H2
g (Ω) arbitrary

but fixed and u0 ∈ H2
0 (Ω) to be determined, such that

a(u0, v0) = F (v0)− a(ug, v0), for all v0 ∈ H2
0 (Ω). (19)

We now apply Galerkin projection to the problem (19) by using the C1-smooth space A,
and denote below this C1-smooth space by Ah to specify the selected mesh size h. For this
purpose, we first decompose the space Ah into the direct sum

Ah = Ah,g ⊕Ah,0

with
Ah,0 = {vh ∈ Ah | vh = 0 and ∂nvh = 0 on ∂Ω} .

Then, the problem is to find uh = uh,g+uh,0 with uh,g ∈ Ah,g and uh,0 ∈ Ah,0 by computing
first uh,g ∈ Ah,g via the quadratic minimization problem

∫

∂Ω

(uh,g(x)− g1(x))2 d∂Ω + ω

∫

∂Ω

(∂nuh,g(x)− g2(x))2 d∂Ω→ min
uh,g∈Ah,g

,

with a suitable non-negative weight ω, and determining afterwards uh,0 ∈ Ah,0 via the
variational problem

a(uh,0, vh,0) = F (vh,0)− a(uh,g, vh,0), for all vh,0 ∈ Ah,0. (20)

Let us study the variational problem (20) in more detail. Assuming that {φh,j}j∈J with
J = {1, . . . , dimAh,0} is a basis of the C1-smooth space Ah,0, the variational problem (20)
is equal to solve the linear system Kc = f for the coefficients c = (cj)j∈J of

uh,0(x) =
∑

j∈J

cjφh,j(x), x ∈ Ω,

where the elements of the stiffness matrix K = (kj1,j2)j1,j2∈J and of the load vector f =
(fj)j∈J are given by

kj1,j2 =

∫

Ω

∆Ωφh,j1(x)∆Ωφh,j2(x)dΩ,

and

fj =

∫

Ω

f(x)φj,h(x) dΩ,

respectively. Since Ω is a multi-patch surface domain given by Ω = ∪i∈IΩΩ(i), the elements
kj1,j2 and fj can be also computed via

kj1,j2 =
∑

i∈IΩ

∫

Ω(i)

∆Ωφh,j1(x)∆Ωφh,j2(x)dΩ(i),

and

fj =
∑

i∈IΩ

∫

Ω(i)

f(x)φj,h(x) dΩ(i),
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respectively. By using the relations ψ
(i)
h,j(ξ) =

(
φh,j ◦ F(i)

)
(ξ), i ∈ IΩ, j ∈ J and f̃ (i)(ξ) =(

f ◦ F(i)
)

(ξ), i ∈ IΩ, and the tools discussed in Section 2.3, the isogeometric formulation
of the entries kj1,j2 , j1, j2 ∈ J , and fj, j ∈ J , are given by

kj1,j2 =
∑

i∈IΩ

∫

[0,1]2

1

g(i)(ξ)
∇ξ ·

(
(G

(i)
0 )−1(ξ)∇ξψ

(i)
h,j1

(ξ)
)
∇ξ ·

(
(G

(i)
0 )−1(ξ)∇ξψ

(i)
h,j2

(ξ)
)
dξ,

and

fj =
∑

i∈IΩ

∫

[0,1]2
f̃ (i)(ξ)ψ

(i)
h,j(ξ)g(i)(ξ) dξ,

respectively.

5.1.2. The model problem for closed surfaces

In case of closed surfaces (Example 6), we consider instead of problem (17) the following
biharmonic equation in strong form: Find u : Ω→ R such that

∆2
Ω u(x) + λu(x) = f(x), x ∈ Ω. (21)

The reason for this is that in case of closed surfaces boundary conditions cannot be im-
posed because there is no boundary. Note that adding the extra term λu, with λ > 0, is
necessary to guarantee the well-posedness of the problem (21), cf. [2]. Let us study now the
derivation of the isogeometric Galerkin discretization of the problem (21), which proceeds
slightly different to the problem (17) for the case of open surfaces. We start with the weak
formulation of the problem (21), which is to find u ∈ H2(Ω) such that

a(u, v) = F (v), ∀v ∈ H2(Ω), (22)

where again a is a bilinear form and F is a linear functional, but now of the form

a : H2(Ω)×H2(Ω)→ R, a(u, v) =

∫

Ω

∆Ωu(x)∆Ωv(x) dΩ +

∫

Ω

λu(x)v(x) dΩ,

and

F : H2(Ω)→ R, F (v) =

∫

Ω

f(x)v(x) dΩ,

respectively. We then also apply Galerkin projection to the problem (22) by using the
C1-smooth space A, again denoted by Ah, which leads to: Find uh ∈ Ah such that

a(uh, vh) = F (vh), for all vh ∈ Ah. (23)

Assuming that {φh,j}j∈J with J = {1, . . . , dimAh} is a basis of the C1-smooth space Ah,
problem (23) is again equivalent to a linear system Kc = f , now for coefficients c = (cj)j∈J
of

uh(x) =
∑

j∈J

cjφh,j(x), x ∈ Ω,
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for a stiffness matrix K = (kj1,j2)j1,j2∈J with the elements

kj1,j2 =

∫

Ω

∆Ωφh,j1(x)∆Ωφh,j2(x)dΩ +

∫

Ω

λφh,j1(x)φh,j2(x)dΩ,

and for a load vector f = (fj)j∈J with the elements

fj =

∫

Ω

f(x)φj,h(x) dΩ.

Again, due to the fact that Ω is a multi-patch surface domain given by Ω = ∪i∈IΩΩ(i), and

using the relations ψ
(i)
h,j(ξ) =

(
φh,j ◦ F(i)

)
(ξ), i ∈ IΩ, j ∈ J and f̃ (i)(ξ) =

(
f ◦ F(i)

)
(ξ),

i ∈ IΩ, and the tools discussed in Section 2.3, we can express the isogeometric formulation
of the elements kj1,j2 , j1, j2 ∈ J , and fj, j ∈ J , which possess now the form

kj1,j2 =
∑

i∈IΩ

∫

[0,1]2

1

g(i)(ξ)
∇ξ ·

(
(G

(i)
0 )−1(ξ)∇ξψ

(i)
h,j1

(ξ)
)
∇ξ ·

(
(G

(i)
0 )−1(ξ)∇ξψ

(i)
h,j2

(ξ)
)
dξ

+
∑

i∈IΩ

∫

[0,1]2
λψ

(i)
h,j1

(ξ)ψ
(i)
h,j2

(ξ)g(i)(ξ) dξ,

and

fj =
∑

i∈IΩ

∫

[0,1]2
f̃ (i)(ξ)ψ

(i)
h,j(ξ)g(i)(ξ) dξ,

respectively.

5.2. Numerical examples

We demonstrate the potential of the C1-smooth isogeometric functions, constructed
in Section 3, to solve a fourth order partial differential equation, namely the biharmonic
equation, over different AS-G1 multi-patch surfaces by means of isogeometric analysis. For
this purpose, we use the isogeometric Galerkin discretization of the biharmonic equation
from Section 5.1.1 or 5.1.2 depending on considering an open or closed multi-patch surface,
respectively, and perform several experiments to numerically investigate the approximation
properties of the C1 isogeometric spline spaces, see Examples 3–6, below. The construction
of the employed AS-G1 multi-patch surfaces is based on different design methods, namely on
the techniques developed in Section 4 (Example 4 and 5), on the method [19] (Example 6) or
on a simple design approach directly introduced in the corresponding example (Example 3).
For the numerical study of the approximation properties of the C1 isogeometric spline
spaces A over the different AS-G1 multi-patch surfaces, we perform for all examples h-
refinement to generate a sequence of C1 isogeometric spline spaces A with mesh sizes h =
2−Lh0, denoted as in Section 5.1 by Ah, where h0 is the initial mesh size and L = 0, 1, 2, . . .
is the level of refinement.

The resulting errors for solving the biharmonic equation are computed in two different
ways depending on whether or not the exact solution of the considered problem is available.
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In case one global parameterization of the considered AS-G1 multi-patch surface exists, as
in Example 3 and 4, we use an exact solution uex, in our instances the analytic function

uex(x1, x2, x3) = 2 cos(8x1) cos(1− 6x2), (24)

to determine the functions f , g1 and g2 of the problem (17). Then, we compute for each
mesh size h just relative errors, namely in our case the L2-norm

‖uh − uex‖L2

‖uex‖L2

, (25)

the H1-seminorm
|uh − uex|H1

|uex|H1

(26)

and the L2-norm of the difference of the Laplacian

‖∆uh −∆uex‖L2

‖∆uex‖L2

, (27)

which is equivalent to the H2-seminorm [2]. Below, we will refer for the sake of brevity to
the equivalent norm (27) just as H2-seminorm.

In case one global parameterization of the considered AS-G1 multi-patch surface does
not exist as in Example 5 and 6, and additionally in Example 4 for comparison, we perform
h − h/2 type error estimation (see e.g. [8, 10]), performing the difference between two
subsequent computed solutions at the mesh size h and h/2. In particular, the estimators
have the form

‖uh − uh/2‖L2 , |uh − uh/2|H1 and ‖∆uh −∆uh/2‖L2 . (28)

These error estimators can be seen as the analogues of the relative errors defined in
(25), (26) and (27), respectively. Note that the last estimator in (28) is again equivalent to
the estimator |uh − uh/2|H2 . For the sake of brevity, we refer to the error estimators (28)
in the figures of the concrete examples below just by L2, H1 and H2.

While in Example 4 and Example 5 for open surfaces, we solve the problem (17) by
choosing the values of the right hand side f and of the two boundary value functions g1

and g2 as
f = 5, g1 = 0 and g2 = 0, (29)

respectively, we solve in Example 6 for the considered closed surface the model problem
described in (21) for the function

f(x1, x2, x3) = cos
(π

2
x1

)
cos
(π

2
x2

)
cos
(π

2
x3

)
. (30)

Let us study now in detail the Examples 3–6, where the numerical results will indicate
in all four cases optimal approximation properties of the corresponding C1-smooth isoge-
ometric spline spaces Ah. In the first three examples, we deal with the case open AS-G1

multi-patch surfaces and solve the biharmonic equation over these surfaces.
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Example 3. We consider from Example 2 the surface S given by (16), but now with
respect to three different parameter domains represented by planar bilinear multi-patch
parameterizations F̃`, ` = 1, 2, 3, where F̃1, F̃2 and F̃3 is the three-, four- and five-patch
domain, respectively, given in Figure 7 (first row). More precisely, we generate the three
multi-patch surfaces F`, ` = 1, 2, 3, where F1, F2 and F3 is the three-, four- and five-patch
surface, respectively, consisting of the single surface patch parameterizations F

(i)
` = S◦F̃(i)

` ,
i = 1, . . . , 2 + `, see Figure 7 (second row). The resulting multi-patch surfaces F`, ` =
1, 2, 3, are trivially AS-G1 by construction, and possess surface patch parameterizations
F

(i)
` ∈ (Pq

2 )3, i = 1, . . . , 2 + `, with q = (2, 2). We solve the biharmonic equation (17)
for the functions f , g1 and g2 obtained by the exact solution (24), see Figure 7 (third
row), over the three multi-patch surfaces F`, ` = 1, 2, 3, by using the C1-smooth spaces Ah
for p = 3, 4 and r = 1. The numerical results uh indicate optimal rates of convergence
in the L2 norm and in the H1 and H2 seminorms as shown in Figure 7 (fourth row) for
degree p = 3 and in Figure 7 (fifth row) for degree p = 4.

Example 4. Let F be the AS-G1 four-patch surface from Example 2 visualized in Figure 6
(second row), which has been constructed from a trimmed surface and which consists of
surface patch parameterizations F(i) ∈ (Sp,r

h )
3
, i = 1, . . . , 4, p = (4, 4), r = (1, 1) and

h = 1
4
. We solve now the biharmonic equation (17) over the AS-G1 four-patch surface F

for two different settings by using the C1-smooth space Ah for p = 4 and r = 1. While the
functions f , g1 and g2 are derived in the first case from the exact solution (24), they are
given in the second case as in (29). In Figure 8 (first row), the numerical results uh are
visualized at the finest selected mesh size of Ah for the first case on the left side and for
the second case on the right side. In both cases, the obtained convergence results indicate
optimal rates in the L2 norm and in the H1 and H2 seminorms as shown in Figure 8
(second row) with the first case on the left side and with the second case on the right side.

Example 5. We consider the three AS-G1 multi-patch surfaces F`, ` = 1, 2, 3, constructed
in Example 1 and shown in Figure 5 (second row, from left to right), which approximate
in each case a portion of a sphere and consist of four, six and five surface patch param-
eterizations F

(i)
` ∈ (Sp,r

h )
3
, p = (3, 3), r = (1, 1) and h = 1

3
, respectively. We solve over

these AS-G1 multi-patch surfaces the biharmonic problem (17) with the right hand side
and boundary conditions (29) by using C1-smooth isogeometric spline spaces Ah for de-
gree p = 3 and r = 1. In all three instances, the numerical results uh, which are are
visualized at the finest selected mesh size of Ah in Figure 9 (first row), indicate optimal
convergence rates in the L2 norm and in the H1 and H2 seminorms as shown in Figure 9
(second row).

In the last example, we deal with the case of a closed AS-G1 multi-patch surface and
solve the biharmonic equation over this surface.

Example 6. We consider the closed AS-G1 six-patch surface F from [19, Example 5],
which is a multi-patch spline approximation of a sphere, where the single patch parameter-
izations F(i), i = 1, . . . , 6, belong to the space (Sp,r

h )
3

with p = (3, 3), r = (1, 1) and h = 1
2
,

see Figure 10 (first row). We solve the biharmonic equation (21) for the parameter λ = 1
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Figure 7: Example 3. Solving the biharmonic equation (17) over three different AS-G1 multi-patch surfaces.
First row: Parameter domains. Second row: AS-G1 multi-patch surfaces. Third row: Exact solutions (24).
Fourth and fifth row: Convergence plots by using the C1-smooth space Ah for degree p = 3 (fourth row)
and p = 4 (fifth row) and regularity r = 1 in both cases.
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Figure 8: Example 4. Solving the biharmonic equation (17) over the AS-G1 four-patch surface from
Example 2 shown in Figure 6 (second row). First and second row: The numerical results uh at the finest
selected mesh size h and the resulting convergence plots for solving the biharmonic equation (17) for the
functions f , g1 and g2 derived from the exact solution (24) (left) and given as in (29) (right) using the
C1-smooth space Ah for degree p = 4 and regularity r = 1.
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Figure 9: Example 5. Solving the biharmonic equation (17) over the three different AS-G1 multi-patch
surfaces constructed in Example 1 and visualized in Figure 5 (second row), which approximate in each
case a portion of a sphere. First and second row: The numerical results uh at the finest selected mesh
size h and the resulting convergence plots for solving the biharmonic equation (17) using the C1-smooth
space Ah for degree p = 3 and regularity r = 1.

and the function f as given in (30) over the closed AS-G1 six-patch surface F by using the
C1-smooth space Ah for p = 3 and r = 1. Also in this case of a closed AS-G1 multi-patch
surface, the numerical results uh, see Figure 10 (second row, left) for the finest selected
mesh size h, indicate optimal rates of convergence in the L2 norm and in the H1 and H2

seminorms, see Figure 10 (second row, right).

6. Conclusion

We presented the construction of a particular C1-smooth isogeometric spline space A
defined over an AS-G1 multi-patch surface or equivalently over its AS-G1 skeleton. Our
method extends the construction [20, 21], which is limited to the case of AS-G1 planar
multi-patch geometries, to the case of AS-G1 multi-patch surfaces. The constructed C1-
smooth isogeometric spline space A is a subspace of the full C1-smooth space V1, which
is simple to generate, possesses an explicitly given, locally supported basis and whose
dimension is independent of the underlying AS-G1 parameterization of the multi-patch
surface.

The presented numerical examples of solving the biharmonic equation over different AS-
G1 multi-patch surfaces with the resulting optimal convergence rates in the L2 norm and
in the H1 and H2 seminorms indicate that the constructed C1-smooth space A possesses
optimal approximation properties. We further developed simple and practical methods
for the design of AS-G1 multi-patch surfaces, which allow the approximation of (approx-
imately) smooth surfaces by AS-G1 multi-patch surfaces, and introduced an isogeometric
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Figure 10: Example 6. Solving the biharmonic equation (21) over an AS-G1 six-patch surface approximat-
ing a sphere (first row) with the numerical result uh at the finest selected mesh size h (second row, left)
and the resulting convergence plot (second row, right) using the C1-smooth space Ah for degree p = 3 and
regularity r = 1.
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multi-patch Galerkin discretization of the considered biharmonic problem.
A first interesting topic for possible future research is the use of the constructed C1-

smooth isogeometric spline space A to solve further fourth order problems such as the
Kirchhoff-Love shell problem, the Cahn-Hilliard equation or problems of strain gradient
elasticity. Another possible topic is the detailed study and construction of AS-G1 template
multi-patch parameterizations as well as of their AS-G1 skeletons in the presented general
framework for the design of AS-G1 multi-patch surfaces to provide the framework for a
large class of initial surfaces.
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with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Engrg., 198(49):3902–
3914, 2009.

[28] J. Kiendl, M.-Ch. Hsu, M. C. H. Wu, and A. Reali. Isogeometric Kirchhoff-Love shell
formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Engrg.,
291:280 – 303, 2015.
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